{
"Scaling" : "Scaling_ToDefine",
"modelType" : "Model_ToDefine",
"lengthscale_prior": None,
"lengthscale_MinConstraint" : "lengthscale_Constraint_ToDefine",
"mean" : "gpytorch.means.ZeroMean()",
"control_condition": "ControlCondition_ToDefine",
"training_iterations": 500 ,
"LearningRate" : 0.1,
"Amsgrad" : False,
"n_PredictionsPoints" : 50,
"PlotSave" : True,
"prediction_type" : "predicted_functions",
"GPMelt_statistic" : "Statistic_ToDefine"
}
1 The parameters.txt
file
In this step, we create the parameters.txt
file, that should be saved with the data.
This file contains the parameters for the model specification and fitting.
We restate hereafter the important pages to look at to understand these parameters and their effects on the model specifications and fits. Do not hesitate to play around these parameters to better understand them!
2 A complete example of the parameters.txt
file.
To start, we present below an example of the file:
Note:
- These parameters cannot be left blank!
- The following values in the example below do not correspond to default values of the parameters and should be consciously chosen by the user:
Scaling
,modelType
,lengthscale_MinConstraint
,control_condition
,GPMelt_statistic
.
We now go step by step to explain this parameters.txt
file.
4 Parameters for the model estimation
Following Gpytorch(Gardner et al. 2018) routine, we use Type II MLE to train the hyper-parameters of the full HGP model \(\mathcal{M}_1\). Some parameters of this algorithm can be tuned, see here, section 5.
4.1 Number of iterations
1'training_iterations': 500
- 1
- A larger number of iterations might be required if the model is more complex (e.g. a large number of conditions).
4.2 Learning rate
Also see Gpytorch documentation for more information.
1'LearningRate': 0.1
- 1
- Can be adjusted if needed
4.3 Whether to use the AMSGrad variant of the Adam algorithm
Also see the Adam documentation for more information.
1'Amsgrad' : False
- 1
-
Can be set to
True
orFalse
4.4 Number of points in which to predict the posterior mean and 95% confidence regions
See here, section 8, for a visualisation of how this number of points affect the prediction.
1'n_PredictionsPoints' : 50
- 1
- Can be adjusted if needed
4.5 Application to ATP 2019
In (Le Sueur, Rattray, and Savitski 2024), the following values have been selected:
'training_iterations': 500
'LearningRate': 0.1,
'Amsgrad' : False ,
'n_PredictionsPoints' : 50
5 Parameters for the plots
5.1 Type of predictions for the fits plots
1"prediction_type" : "prediction_type_ToDefine"
- 1
-
Can take values
predicted_functions
orpredicted_observations
.
We refer to the GPyTorch documentation about GP regression:
predicted_functions
: returns the model posterior distribution \(p(f* | x*, X, y)\), for training data \(X, y\). This posterior is the distribution over the function we are trying to model, and thus quantifies our model uncertainty.predicted_observations
: returns the posterior predictive distribution \(p(y* | x*, X, y)\) which is the probability distribution over the predicted output value \(\Rightarrow\) here the prediction is over the observed value of the test points.
5.2 Should the set of plots generated for each ID (monitoring convergence, depicting the fits and the covariance matrices of the full and joint models) be saved?
1'PlotSave' : True
- 1
-
Can be changed to
False
if needed
5.3 Application to ATP 2019
In (Le Sueur, Rattray, and Savitski 2024), the following values have been selected:
"prediction_type" : "predicted_functions",
'PlotSave' : True
7 The complete parameters.txt
file for the ATP 2019
{
"Scaling" : None,
"modelType" : "3Levels_OneLengthscale_FixedLevels1and2and3",
"lengthscale_prior": None,
"lengthscale_MinConstraint" : "min",
"mean" : "gpytorch.means.ZeroMean()",
"control_condition": "Vehicle",
"training_iterations": 500 ,
"LearningRate" : 0.1,
"Amsgrad" : False,
"n_PredictionsPoints" : 50,
"PlotSave" : True,
"prediction_type" : "predicted_functions",
"GPMelt_statistic" : "dataset-wise"
}
7.1 Save the parameters.txt
file
The updated parameters.txt
file should be saved in the folder Nextflow/dummy_data/ATP2019
, using the name parameters.txt
.